Implementing Artificial Neural Networks and Genetic Algorithms to Solve Modeling and Optimisation of Biogas Production

نویسندگان

  • Abdul Sahli Fakharudin
  • Md Nasir Sulaiman
  • Jailani Salihon
  • Norazwina Zainol
چکیده

This paper proposed a framework to model and optimises a biogas production using artificial neural networks and genetic algorithms. The intelligence computation was applied to achieve a better model and optimisation compared to a mathematical modeling. Two training approaches were used to train a set of neural networks design. The trained networks model predictions were used to generate a maximum biogas output assisted by genetic algorithms optimisation. The result showed that modeling accuracy with low error will not give a better yield. It also reported a 0.44% increase of maximum biogas yield from the published result.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms

Yarn tenacity is one of the most important properties in yarn production. This paper addresses modeling of yarn tenacity as well as optimally determining the amounts of the effective inputs to produce yarn with desired tenacity. The artificial neural network is used as a suitable structure for tenacity modeling of cotton yarn with 30 Ne. As the first step for modeling, the empirical data is col...

متن کامل

Pareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms

A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...

متن کامل

Comparison of Genetic and Hill Climbing Algorithms to Improve an Artificial Neural Networks Model for Water Consumption Prediction

No unique method has been so far specified for determining the number of neurons in hidden layers of Multi-Layer Perceptron (MLP) neural networks used for prediction. The present research is intended to optimize the number of neurons using two meta-heuristic procedures namely genetic and hill climbing algorithms. The data used in the present research for prediction are consumption data of water...

متن کامل

DIFFERENT NEURAL NETWORKS AND MODAL TREE METHOD FOR PREDICTING ULTIMATE BEARING CAPACITY OF PILES

The prediction of the ultimate bearing capacity of the pile under axial load is one of the important issues for many researches in the field of geotechnical engineering. In recent years, the use of computational intelligence techniques such as different methods of artificial neural network has been developed in terms of physical and numerical modeling aspects. In this study, a database of 100 p...

متن کامل

Application of Artificial Neural Network and Genetic Algorithm for Predicting three Important Parameters in Bakery Industries

Farinograph is the most frequently used equipment for empirical rheological measurements of dough. It’suseful to illustrate quality of flour, behavior of dough during mechanical handling and texturalcharacteristics of finished products. The percentage of water absorption and the development time of doughare the most important parameters of farinography for bakery industries during production. H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013